以實現(xiàn)電機的變速運行的設備,變頻器是把工頻電源(50hz或60hz變換成各種頻率的交流電源。其中控制電路完成對主電路的控制,整流電路將交流電變換成直流電,直流中間電路對整流電路的輸出進行平滑濾波,逆變電路將直流電再逆成交流電。對于如矢量控制變頻器這種需要大量運算的變頻器來說,有時還需要一個進行轉矩計算的cpu以及一些相應的電路。變頻調(diào)速是通過改變電機定子繞組供電的頻率來達到調(diào)速的目的變頻器的分類方法有多種,依照主電路工作方式分類,可以分為電壓型變頻器和電流型變頻器;依照開關方式分類,可以分為pa m控制變頻器、pwm控制變頻器和高載頻pwm控制變頻器;依照工作原理分類,可以分為v/f控制變頻器、轉差頻率控制變頻器和矢量控制變頻器等;依照用途分類,可以分為通用變頻器、高性能變頻器、高頻變頻器、單相變頻器和三相變頻器等。vvvf改變電壓、改變頻率 cvcf恒電壓、恒頻率。各國使用的變頻技術是應交流電機無級調(diào)速的需要而誕生的20世紀60年代以后,電力電子器件經(jīng)歷了scr晶閘管)gto門極可關斷晶閘管)bjt雙極型功率晶體管)mosfet金屬氧化物場效應管)sit靜電感應晶體管)sith靜電感應晶閘管)mgtmos控制晶體管mctmos控制晶閘管)igbt絕緣柵雙極型晶體管)hvigbt耐高壓絕緣柵雙極型晶閘管)發(fā)展過程,器件的更新促進了電力電子變換技術的不時發(fā)展。20世紀70年代開始,脈寬調(diào)制變壓變頻(pwm-vvvf調(diào)速研究引起了人們高度重視。20世紀80年代,作為變頻技術核心的pwm模式優(yōu)化問題吸引著人們濃厚興趣,并得出諸多優(yōu)化模式其中以鞍形波pwm模式效果佳。20世紀80年代后半期開始,美、日、德、英等發(fā)達國家的vvvf變頻器已投入市場并獲得了廣泛應用。交流供電電源,無論是用于家庭還是用于工廠,其電壓和頻率均為400v/50hz或200v/60hz50hz等等。通常,把電壓和頻率固定不變的交流電變換為電壓或頻率可變的交流電的裝置稱作“變頻器”為了發(fā)生可變的電壓和頻率,該設備首先要把電源的交流電變換為直流電(dc用于電機控制的變頻器,既可以改變電壓,又可以改變頻率。變頻器的工作原理我知道,交流電動機的同步轉速表達式位:n=60f1-/p1式中 n異步電動機的轉速;f異步電動機的頻率;s電動機轉差率;p電動機極對數(shù)。由式(1可知,轉速n與頻率f成正比,只要改變頻率f即可改變電動機的轉速,當頻率f050hz范圍內(nèi)變化時,電動機轉速調(diào)節(jié)范圍非常寬。變頻器就是通過改變電動機電源頻率實現(xiàn)速度調(diào)節(jié)的一種理想的率、高性能的調(diào)速手段。變頻器控制方式低壓通用變頻輸出電壓為380650v輸出功率為0.75400kw工作頻率為0400hz主電路都采用交—直—交電路。其控制方式經(jīng)歷了以下四代。1u/f=c正弦脈寬調(diào)制(spwm控制方式 其特點是控制電路結構簡單、利息較低,機械特性硬度也較好,能夠滿足一般傳動的平滑調(diào)速要求,已在產(chǎn)業(yè)的各個領域得到廣泛應用。但是這種控制方式在低頻時,由于輸出電壓較低,轉矩受定子電阻壓降的影響比較顯著,使輸出大轉矩減小。另外,其機械特性終究沒有直流電動機硬,動態(tài)轉矩能力和靜態(tài)調(diào)速性能都還不盡如人意,且系統(tǒng)性能不高、控制曲線會隨負載的變化而變化,轉矩響應慢、電機轉矩利用率不高,低速時因定子電阻和逆變器死區(qū)效應的存在而性能下降,穩(wěn)定性變差等。因此人們又研究出矢量控制變頻調(diào)速。2電壓空間矢量(svpwm控制方式:以三相波形整體生成效果為前提,以迫近電機氣隙的理想圓形旋轉磁場軌跡為目的一次生成三相調(diào)制波形,以內(nèi)切多邊形迫近圓的方式進行控制的經(jīng)實踐使用后又有所改進,即引入頻率彌補,能消除速度控制的誤差;通過反饋估算磁鏈幅值,消除低速時定子電阻的影響;將輸出電壓、電流閉環(huán),以提高動態(tài)的精度和穩(wěn)定度。但控制電路環(huán)節(jié)較多,且沒有引入轉矩的調(diào)節(jié),所以系統(tǒng)性能沒有得到*。矢量控制(vc方式:矢量控制變頻調(diào)速的做法是將異步電動機在三相坐標系下的定子電流iaibic通過三相-二相變換,等效成兩相靜止坐標系下的交流電流 ia1ib1再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流im1it1im1相當于直流電動機的勵磁電流;it1相當于與轉矩成正比的電樞電流)然后模仿直流電動機的控制方法,求得直流電動機的控制量,經(jīng)過相應的坐標反變換,實現(xiàn)對異步電動機的控制。其實質(zhì)是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制。通過控制轉子磁鏈,然后分解定子電流而獲得轉矩和磁場兩個分量,經(jīng)坐標變換,實現(xiàn)正交或解耦控制。矢量控制方法的提出具有劃時代的意義。然而在實際應用中,由于轉子磁鏈難以準確觀測,系統(tǒng)特性受電動機參數(shù)的影響較大,且在等效直流電動機控制過程中所用矢量旋轉變換較復雜,使得實際的控制效果難以達到理想分析的結果。直接轉矩控制(dtc方式:1985年,德國魯爾大學的depenbrock教授提出了直接轉矩控制變頻技術。該技術在很大水平上解決了上述矢量控制的缺乏,并以新穎的控制思想、簡潔明了系統(tǒng)結構、優(yōu)良的動靜態(tài)性能得到迅速發(fā)展。目前,該技術已勝利地應用在電力機車牽引的大功率交流傳動上。直接轉矩控制直接在定子坐標系下分析交流電動機的數(shù)學模型,控制電動機的磁鏈和轉矩。不需要將交流電動機等效為直流電動機,因而省去了矢量旋轉變換中的許多復雜計算;不需要模仿直流電動機的控制,也不需要為解耦而簡化交流電動機的數(shù)學模型。矩陣式交—交控制方:vvvf變頻、矢量控制變頻、直接轉矩控制變頻都是交—直—交變頻中的一種。其共同缺點是輸入功率因數(shù)低,諧波電流大,直流電路需要大的儲能電容,再生能量又不能反饋回電網(wǎng),即不能進行四象限運行。為此,矩陣式交—交變頻應運而生。由于矩陣式交—交變頻省去了中間直流環(huán)節(jié),從而省去了體積大、價格貴的電解電容。能實現(xiàn)功率因數(shù)為l輸入電流為正弦且能四象限運行,系統(tǒng)的功率密度大。該技術目前雖尚未成熟,但仍吸引著眾多的學者深入研究。其實質(zhì)不是間接的控制電流、磁鏈等量,而是把轉矩直接作為被控制量來實現(xiàn)的具體方法是控制定子磁鏈引入定子磁鏈觀測器,實現(xiàn)無速度傳感器方式;自動識別(id依靠的電機數(shù)學模型,對電機參數(shù)自動識別;算出實際值對應定子阻抗、互感、磁飽和因素、慣量等算出實際的轉矩、定子磁鏈、轉子速度進行實時控制;實現(xiàn)bandband控制按磁鏈和轉矩的bandband控制發(fā)生pwm信號,對逆變器開關狀態(tài)進行控制。矩陣式交—交變頻具有快速的轉矩響應(<2m很高的速度精度(±2%無pg反饋)高轉矩精度(<+3%;同時還具有較高的起動轉矩及高轉矩精度,尤其在低速時(包括0速度時)可輸出150%200%轉矩。
江蘇潤儀儀表有限公司專業(yè)提供:精密數(shù)字壓力計_普通膜盒壓力表_普通隔膜壓力表_智能差壓變送器等產(chǎn)品